
Software Performance in the Real World:
Personal Lessons from the Performance Trauma Team

Jayshankar Sankarasetty Kevin Mobley Libby Foster Tad Hammer Terri Calderone
Systems Engineer,

Fidelity Information Services
MEPZ, Covansys

Chennai 600045, INDIA
91 (2262 8080)

Jayshankar.Sankarasetty@fnf.com

Director of Software
Performance Engineering,

Fidelity Information
Services

14 Piedmont Center,
Suite 800

Atlanta, GA 30305
01 (404) 439–8434

kevinmobley@gmail.com

Sr. Systems Engineer,
Fidelity Information

Services
14 Piedmont Center,

Suite 800
Atlanta, GA 30305
01 (248) 792–9474

Libby.Foster@fnf.com

Sr. Systems Engineer,
Fidelity Information

Services
14 Piedmont Center,

Suite 800
Atlanta, GA 30305
01 (404) 439–8338

Tad.Hammer@fnf.com

Systems Engineer,
Fidelity Information

Services
14 Piedmont Center,

Suite 800
Atlanta, GA 30305
01 (404) 442–4235

Terri.Calderone@fnf.com

ABSTRACT
In the nine years that we have been involved in software
performance engineering (SPE) and performance testing
engagements we have learned several things. Across numerous
eCommerce applications and an enterprise CRM product suite, our
knowledge base about the field of Software Performance
Engineering is constantly evolving. The focus of this paper is what
we have learned in the areas of SPE project management,
performance testing, defining the scope of SPE projects, ITIL,
post production performance support, and exploration of the
boundaries of applied SPE. Is it really just about performance?

Categories and Subject Descriptors
C.4 [Performance of Systems]: Software Performance
Engineering best practices – systems integration, project
management, business process selection, performance testing,
performance management, and case studies.

General Terms
Management, Measurement, Documentation, Performance,
Design, Economics, Reliability, Experimentation, Standardization,
Theory, Verification.

Keywords
Software Performance Engineering, Software Performance
Management, Performance Testing, ITIL, Six Sigma, and Project
Management

1. Real World SPE
This paper serves to provide examples of how SPE can, and has,
been accomplished successfully in the real world within our
organization. These vignettes show different views within our SPE
group, and how the theories have been applied. The first section
comprises the project management and overall guiding principles
our SPE team uses. A case study involving one of our customers

follows, then our scripting and testing system. Furthermore, an
overview of ITIL related to production is introduced. The last
section details the most pervasive and destructive assumptions
within the software engineering discipline related to SPE.

2. Software Performance Engineering:
Project Management
The realm of Software Performance Engineering is riddled with
misunderstanding from those outside of operations or those who
have never worked on bringing software into production. Some of
the common misconception it that performance testing is “just
another functional test” to load test the system. Another primary
misconception is that we’ll just “get some numbers” to prove the
system performs. If these misunderstandings are not managed and
corrected, they can be detrimental to client relationships. Issues
related to performance must be anticipated, thought through and
planned accordingly. This makes the job of a project manager in
the performance engineering team even more uncertain as this
area is full of unknown pitfalls.
Contrary to the beliefs of the Project Management Institute®, it is
very difficult - if not impossible - to project manage performance
engineering projects without a base understanding of what the
goals of the project are, and how the software performance
engineering cycle comes into play. As with most software
development firms, project resources are at a premium. The role
of SPE project manager expands to fill the gaps where there is a
great need to communicate and educate client teams. At the very
least, the project manager needs to be able to convey a high level
understanding of the ins and outs of what to expect from a
performance engineering effort

2.1 The SPE Project Manager - Educator,
SPE Public Relations Representative and
Planner
Educating executives and project teams, both inside your own
organization and outside, can be daunting. If done successfully, it
can forge cross-disciplined, supportive proponents for the often
overlooked role of the performance team. Executives have little to
no time to understand lengthy white papers and technical reports
on performance engineering, so boiling down the complex process
of Performance Engineering is imperative. Herein lies the
challenge: succinctly explaining complex and multi-faceted
concepts to business savvy, harried executives and business,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’07, February 5–8, 2007, Buenos Aires, Argentina.
Copyright 2007 ACM 1-59593-297-6/07/0002...$5.00.

operations, and support staff at the same time. As in the other
disciplines of project management, communication is key. The
technical roles inside the performance engineering team are
complex and inter-disciplined, with few parallels in the software
industry. With tighter deadlines and ever increasing demands for
“performance insurance” - the base motivation for performance
work - these roles are stretched thin. The time required for many
in technical roles to translate what they do grows, while the
amount of output expected expands. In order to bridge this gap
and assist the SPE team, the project manager is a key asset.
While most executives tend to want shorter, higher level
information, other groups want more detailed information about
what is expected. The term “want” may be subjective, but it is
important that these teams get the necessary information so that
they may fully appreciate their important role in the business
process selection process which drives positive post “go-live”
performance.
Here is where the role of the project manager as “Public Relations
Manager” comes into play. It is through this process that the
project manager adds great value to the performance team.
Generating this interest and desire to prioritize performance
engineering efforts is generally an uphill battle, particularly if the
staff is new to bringing software into production. If a buy-in from
executives and line management is not achieved, the likelihood
that the project will succeed, or be completed on schedule, is
severely reduced. Again, this is contrary to the belief of many in
project management, that understanding the effort in any amount
of detail is not required to successfully manage projects. If the
public relations tools are applied to create interest, the role of the
performance team is significantly enhanced. The performance
engineering team is definitely not an island, and cannot be
successful without input into the priorities of the business and the
understanding of the day-to-day operations of the business.
The planning effort for performance engineering is not an easy
task. The plan must be flexible enough to allow for impromptu -
and notoriously last minute - projects and the management of
these issues and risks that arise takes dogged determination in
resolving. In many cases escalating project roadblocks that are
encountered along the way is necessary. In high level form, the
process flow looks similar to the following:

2.2 Project Initiation and Education
This allows for acceptance of performance engineering into the
implementation software development life cycle.

2.3 Environment Setup
Whether the subject is host, client/server, or web based there are a
multitude of details involved with this process. Not only are
typical requests made - firewall, network access, etc. - there are
special requests that often require following more lengthy
processes to achieve. These may include items such as owner
access to database, web, and host servers. DO NOT underestimate
this stage in planning the performance engineering effort.
Oftentimes, the processes for getting this work accomplished are
not clearly documented, nor are internal service level agreements
established, to quickly resolve issues for a misconstrued “testing”
environment. Misconstrued, because the performance environment
is a completely different animal altogether, in that production
scaling occurs along with database scaling which means the
creation of the environment is much more demanding and
complex. It is important to remember, more complex requests =

longer delivery times. Red tape is not the only hurdle that must be
overcome, but it certainly takes its toll on the SPE project
schedule.

2.4 Business Process Selection
This is where key business and operations staff are educated in the
method for business process selection. The members of this group
are key contributors to the success of this effort and convincing
these often over-taxed team members for participation sometimes
takes a little more effort. The more acceptance and diligence that
the staff exerts, the more precise is the focus of the performance
engineering team’s effort, and the better the chance of accurate
performance results. At this juncture, the executive, operations,
and performance engineering teams MUST agree. It is best to
have a formal sign-off of the accepted terms of the performance
testing. This includes agreement and acceptance of business
process selection, utilization (how often the mix of business
processes are invoked), and project performance targets. This has
on more than one occasion come back to bite the performance
team when not “closed” properly.

2.5 Performance Testing and Optimization
Cycles
The majority of pitfalls exist at this point. As in standard quality
assurance testing, the performance effort is the last car on the
train. Furthermore, the estimates produced are based on finite
assumptions. Even though the assumptions are documented, they
are often ignored, or at best severely discounted, by the project
team. This situation can create tension between the development
project team and the performance team. Again, continued or
repeated education is in order. As go-live approaches, the urgency
of the project team to accomplish goals increases. Unfortunately,
if buy-in was not achieved and the realization that performance IS
a key contributor to the success of the “go-live” arrives late in the
process; you have a “house on fire” scenario. This is never
conducive to comprehensive analysis and engineering, but is often
the state that the performance team finds themselves in.

2.6 What If Project Management Is Not
Involved In The Performance Engineering
Effort?
The results vary, but generally, it is not a pretty picture. As with
any other area of software development, managing and controlling
activities, if left to their own devices they do not always get
accomplished. Part of the project manager’s job is to dot I's and
cross T’s. This is most important in documenting the agreement
of all parties of the objectives, targets, and processes of
performance engineering. This goes hand in hand with education,
along with accomplishment of buy-in to the performance effort.
In conclusion, the role of project manager is essential to the SPE
team. Their expertise in understanding projects, educating new
project implementation teams and gaining both buy-in, as well
as terms acceptance, are all vital to the success of the
performance engineering effort. Bringing the worlds of project
management and performance engineering together allows for
greater chances of project success in the timeframes outlined in
the overall implementation schedule.

2.7 Software Performance Engineering:
Using Six Sigma Define SPE Focus
The failure modes and effects analysis (FMEA) process is a Six
Sigma concept used to determine the software modules to be
tested for software performance engineering considerations. The
Pareto principal (also known as the 80/20 rule) states that for
many phenomena 80% of the consequences stem from 20% of
the causes. The FMEA tool is an approach to define the 20% of
software pathways that will create 80% of the performance
problems in a working software system. By utilizing the FMEA
tool early in the development process one can decrease the
amount of time for performance testing - limiting the number of
scenarios to test and increasing stability of the deployed
software by testing the correct scenarios.
The FMEA process was originally created by the US military in
1949 to classify failures. Used in the Apollo space missions of
the 1960’s, it was also used by Ford to reduce future risks after
the Pinto fuel tank ruptures. FMEA begins with brainstorming
sessions of a cross-section of individuals that have knowledge of
the product and have a stake in the product’s success. The first
step is to list all of the critical parts of the product. The next step
is to list all of the possible failures in the product and to list the
possible causes of the failures. These parts must then be ranked
based on the criticality of a failure. The ranking of a failure is in
the range of 1-9 and it is based on the severity, occurrence, and
detection of the failure. For SPE, the FMEA process can include
a ‘willingness to wait’ factor; this means the amount of time the
user can afford to wait for a failure to be addressed. Each part
of the product being analyzed must be given a number for each
of these four factors. The final step is to calculate the Risk
Priority Number (RPN) of each part of the product by
multiplying together all of the factors.
RPN = Severity * Occurrence * Detection * Willingness to
Wait
The higher the RPN of a component, the more risk that
component will be to the overall success of the project, and the
more attention that piece should be given.
Below is an illustration of applying the FMEA process to a live
business situation. In 2005 Prospect Bank, located in Michigan,
was deploying a substantial new release of their banking sales
software developed by Fidelity Information Services (FIS). The
FIS software performance engineering group was enlisted to test
the software performance before deployment to ferret out any
issues that could cause a postponement of the “go-live” date.
The case study will illustrate the step by step process that was
followed and how this process ensured the reliability of the
newly released software.

3. The Real Deal - Working With Customers
The following case study implements the methodology
described above, only the names have been changed to protect
the guilty.

3.1 A Case Study:
Prospect Bank had originally deployed FIS’ TouchPoint
software product in 2002 but were moving on with a new major
release, as well as customized functionality above and beyond
what had been performance tested during the development cycle
of this major release. The bank was not accustomed to working
with a true SPE department or the FMEA process. The bank had

a staff of two to run performance tests, with knowledge of
performance software test tools, and that was all they thought
they would need. The FMEA process was viewed by the bank as
merely a revenue generating step for FIS, rather than a valid
process to determine what scenarios to performance test. The
political atmosphere was a major challenge to overcome.
Below are the steps that were taken to determine which
scenarios should be tested to meet the 80/20 rule.

1. A group consisting of all stakeholders, including
business analysts, software developers, and
performance engineers, worked together to come up
with a list of business processes (BP’s) that would be
performed with the new version of TouchPoint. The
list also included the following data:

a. The busiest hour of the day.
b. The amount of BP’s that would be used

during that hour.
c. The number of TouchPoint users.
d. The time the users would log into the system

as it was a system used nationwide.
2. The customer also worked with the business analysts

to obtain the busy hour data for each of the BP’s
which is used for the occurrence factor of the FMEA
RPN.

3. When the software was ready; the steps to perform
each BP were documented.

4. A data capturing tool, embedded into the FIS banking
software, was installed to monitor the amount of data
being transferred between client and server. The BP’s
were performed and the data was stored to the user’s
hard drive. The following data, which pertains to the
severity or process risks, was captured:

a. The content to message size ratio of the
XML data that was transferred.

b. The number of parsing cycles that took
place when the XML was received and at
what tier the parsing took place.

c. The number of XSL transformations.
d. The XML message size.
e. The tier at which the data was sorted.
f. Database interaction. (The number of reads,

inserts, and adds to the database).
g. The number of round trips from the client to

the server.
5. As the data capture was taking place, the customer

formulated a ‘Willingness to Wait’ listing. Each BP
was put in one of the three groups listed below.

a. Customer is willing to wait up to 6 months
for optimization. (1)

b. Customer is willing to wait up to 2 months
for optimization. (5)

c. Customer is not willing to wait at all. (9)
6. The level of detection for errors in each BP was also

ranked by the performance engineers. Each BP was
placed in one of these 3 groups:

a. Fully covered by a previous performance
testing effort. (1)

b. There was a substantial increase in usage of
this BP from previous performance testing.
(7)

c. The infrastructure differed from previous
performance testing. (8)

d. This BP had never been tested by the
performance group. (9)

7. Finally, this data was tabulated in a spreadsheet and
given a ranking. The factor of all of the components;
severity, occurrence, detection, and willingness to
wait.

8. The final step was to create a performance test plan
utilizing the top 5 BP’s that were surmised from the
FMEA process.

The FMEA process ensured the customer and the developers of
a strong performance test plan that would exercise the most
likely targets for failure. The software was successfully
deployed, is currently in production now, and has not had any
live performance production issues. Some optimization efforts
were finished in the six month time period and some were
addressed before the go-live date. Now that the bank has
experienced and understands the FMEA process that the SPE
department employs they are much more amenable to applying
this process again. In fact, the bank has readily embraced the
process for our next release of software.
In conclusion, FIS’ SPE department has found that using the
Pareto Principle through the FMEA process is an effective way
to define the parameters of what to test for a successful
performance cycle. When applied to real world business
scenarios this process has also been a tool to gain credibility
with the customer as well as to pave a smoother path for future
performance cycles with the customer.

4. How We Test
The following section provides insight to the exact methods our
team employs for validating and benchmarking our software
performance. We have a rather complex application to test, and
these steps provide a glimpse into the way we approach testing
this “monster”. This new world of SOA – where everything
talks to everything – and increasingly diverse architectures
provides a world of required learning to be effective. What
follows is a nuts and bolts definition of how we do exactly that.

4.1 Software Performance Engineering -
Performance Testing
Our team uses a variety of tools during performance testing
efforts, but the two tools we rely upon heavily are the industry’s
800lbs. gorillas: Mercury Interactive LoadRunner and
WinRunner.
LoadRunner is a versatile tool that can be used to drive load
across a multitude of systems with a wide range of
communication protocols supported. Although the tool can
interface with a vast amount of technology and protocols, the
Web (HTTP/HTML) protocol is where we focus the majority of
our testing. LoadRunner provides an extremely accurate way to
simulate extensive amounts of load onto a test system to
determine capacity planning and sizing guides for our core
software products. It is also used to verify planned capacity
compared to expected system load on customized client
deployments.
One downside is that LoadRunner scripts can only account for
response times from web server receipt to reply. Network

transmission time, from the web server back to the client
machine across a WAN, and GUI rendering times on the client
machine, are not captured in LoadRunner testing. To bridge
that gap, our team also uses WinRunner, which we run in
conjunction with LoadRunner testing to get an end to end (key
to glass) response time for the system under load. WinRunner is
often used for automating quality assurance testing scripts in
software applications, but for us it is imperative to gather front
end GUI response times during performance testing. The
combined use of these two tools allows the team to focus on
detection and optimization of performance bottlenecks across
the entire end to end system – database, network, middle tier,
and front end tier.

Diagram 1: Traffic flow diagram for WinRunner and
LoadRunner against the TouchPoint application

Our standards document outlines each step required to move a
performance test script through a full development cycle. The
standards document also outlines required entrance criteria that
must be met before any accurate performance scripting and
testing can begin.
An outline of the basic steps to create LoadRunner and
WinRunner scripts are as follows, with detailed descriptions
below:

! Functional Walkthrough
! Baseline Recording
! Parameterization / Correlation / Synchronization
! Configuration Audit
! Initial Baseline

4.2 Functional Walkthrough
The areas within the application that have been identified for
testing must be defect free. A defect free walkthrough ensures
that the team can focus full attention to performance when all
pieces of application code are working as expected. The Business
Analysts work closely with the SPE team to ensure that the steps
defined for a given script accurately reflect common usage within
the system. This leads us to the first steps of creating a
LoadRunner script - a functional walkthrough of all steps must be
concluded before any scripting can take place. If any area is not
completely functional, it is necessary work with development to
get the system to a point where the script steps can be completed
without error. Once the walkthrough is completed, an initial script
recording can be performed.

4.3 Baseline Recording of TouchPoint with
LoadRunner/WinRunner
The first LoadRunner recording, labeled as a baseline, is saved
and used as a backup if the completed script has any issues or is
lost. A baseline recording consists of two complete passes through
the script. This is necessary for our applications as many
transactions are cached within the front end during the first pass.
By accounting for cached information, the scripts are a realistic
representation of how the system will be used. Not accounting for
cached items can greatly affect the performance on the system
with unnecessary load and will not represent real world usage of
the system. A baseline script contains transaction timers around
predetermined steps, these timers are added during the recording
process. Once a baseline script has been recorded and backed up,
the parameterization phase begins.
The initial WinRunner recording is built upon with the addition of
transaction timers, think times, and parameterization of a few key
data items. Note that transaction timers in WinRunner should
match the timers in the LoadRunner scripts, this allows for easy
comparison of WinRunner to LoadRunner times. Once all of
those items are taken care of, synchronization points must be
added.

4.4 Parameterization, Correlation and
Synchronization
Each LoadRunner script must go through this phase to ensure real
world use of the system when testing and proper interaction with
the application. Parameterization is replacing known data values
in the script with variables that come from data files generated
from a seeded database. These files are called parameter files, and
are generated by the SPE DBA from the TouchPoint database, for
each specific test case. Examples of data that should be
parameterized for TouchPoint include: logon id, workstation,
password, customer name, domain and/or IP address. This step
allows adaptability for testing on different environments with
different host and database platforms. It also assures real world
usage of the system by allowing unique users/workstations to be
used for each virtual user. Correlation is used to capture
information returned by the application for use later in the script.
Correlation is the most important, and complicated part, of
scripting the application with LoadRunner. An example of using
correlation would be capturing the session id and using it
throughout the remainder of the script. Correlation is used to
capture information about the user, customer, and the work folder
or case for future use in the script. Once all configuration and
parameterization is complete, and the script runs successfully with
one virtual user, the configuration audit begins.
WinRunner simulates a real user by navigating through the front
end of the application. Since our application uses a combination
of ActiveX, JavaScript, and an AJAX implementation, a page may
appear to have been loaded completely to the browser while data
is still being loaded to the screen by services in the background.
WinRunner does not possess the technology to determine when a
page has finished loading completely in our application. For that
reason, synchronization points must be added in conjunction with
the transaction timers. Synchronization points may vary from
page to page, but often consist of waiting for a page/objects
existence, waiting for data to display in a list box, or checking to
see if a window exists or has closed.

4.5 Configuration Audit
The configuration audit process verifies that a script can run with
multiple virtual users, the system is stable under load, and the
number of virtual users assigned to each script are sufficient to hit
the throughput goals. We perform a configuration audit on each
script individually. Once a script passes successfully, another
script is added to the mix until all of the scripts can be run together
successfully. The number of virtual users assigned to each script is
validated during configuration audit. Each test script has a pre-
determined execution time and business process per hour
throughput goal. The application execution times must stay
constant, and are calculated by measuring the average time a user
takes to go through the script in the front end. The number of
virtual users needed to hit the throughput goal is calculated before
configuration audit, based on the execution time, but that number
may need to be adjusted once all of the scripts have been added.
System stability is the last piece of the configuration audit. The
entire system (network, database, application server) must be
stable under load for response times and testing results to be valid.
After any instability issues are worked out, the first initial baseline
is taken.

4.6 Initial Baseline – The First Benchmark
The initial baseline is the first test run with all of the LoadRunner
and WinRunner scripts together. Our goal with the TouchPoint
application is to keep the CPU under 80% on the application
server and 60% on the database server. This is the first gauge of
where the code is before any optimization efforts take place. Quite
often the throughput goals are not met, but that is not the
expectation of this test. The baseline is a comparison point for all
changes to gauge whether a code optimization or configuration
change has made an improvement in performance. Once the
initial baseline is complete, optimization areas are identified based
on the results of the baseline and analysis of the system. Detailed
reports are created for the baseline and as optimizations are
introduced and tested in the system. These reports detail test setup,
changes made from the previous tests, operating system utilization
statistics, application response time, memory growth, and process
consumption. A spreadsheet is also used to track each test run and
is useful for comparing the effects of optimization efforts on the
system performance. This method of performance testing, in an
iterative fashion, finds the “hotspots” within our applications. We
can then focus on the work of optimizing, through software or
configuration changes.

5. ITIL – From the Lab to Production
ITIL has developed as a guiding set of principles within the world
of operations. Many of these ITIL components are comprised
within the SPE realm. In our organization, anything outside of
functional defects falls into the category of performance, once in
production. To better serve our clients as we move from the lab to
the production environment, we have adopted certain ITIL
modalities, at least in principle. The following sections provide a
glimpse into the basics of ITIL, and how they can be adapted to
suit any organization.

5.1 Software Performance Engineering:
Performance Optimization and ITIL
Utilizing components of ITIL in performance optimization is a
two phased process. Pre-deployment optimization is the proactive
phase and the post deployment phase which is the reactive stage.

To achieve the required level of optimization, we use agreed
reference points, which are covered in SLM (Service level
management) which is within the ITIL Service Delivery volume.
Post deployment phase uses procedures in the Service support
volume. SLM guidelines are framed to define what to measure,
how to measure and the tools to be used to measure it.

5.2 Application performance optimization
Today’s applications are highly interconnected and integrate many
existing back-end systems and third-party service providers. This
type of architecture has created a complex environment for
building applications.
Apart from the SPE team, other teams which contribute to
performance optimization of an application are developers,
application manager, database architect, and specialist’s who deal
with the hardware and network devices. Each understands the
requirements and targets agreed upon by the management in the
SLM document.
After the application development process is complete, the SPE
team puts a measurement process in place referring to the
agreements defined by SLM which are Service-Level Agreements
(SLAs), which measure the responsiveness and availability of an
application as seen by the end user and Operating Level
Agreements (OLAs), which measure the service that back-end
systems provide.
The performance testing process follows the ITIL’s “Deming
wheel” or “Shewhart cycle” commonly referred to as the plan-do-
check-act (PDCA) refer Diagram 2.The tests are continued with
SLA and OLA as the final goal.
Incident Management and Problem Management components in
the Service Support category are used in countering the post-
deployment issues.

5.3 ITIL and Performance Optimization
ITIL gives us guidelines which tell us ways to do and how not to
do things. There are seven primary components within ITIL, the
IT Infrastructure Library, whose main focus is on Service
Management (SM/ITSM). The purpose of this is to serve as
guidelines for provision and management of effective IT services;
classifying ITSM further gives us Service Delivery and Service
Management

5.3.1 Service Delivery consists of 5 disciplines.
! Service level management
! Capacity management
! Continuity management
! Availability management
! IT financial management

5.3.2 Service Support has 6 disciplines.
! Configuration management
! Incident management
! Problem management
! Change management
! Service/Help Desk
! Release management

Where does performance and optimization of an application fit
into ITIL? Performance optimization lies within the application
development cycle, and in ITIL, service management covers the
discipline of application management. The Application Services

Library provides a framework for structuring application
management.

5.4 Guidelines On How to Measure and What
to Measure
The performance optimization tools used to accurately gauge
performance, as with all the software tools used by the
organization, have to be in the organization's CMDB
(Configuration Management Database). Configuration
management is the implementation of a database that contains
details of the organization’s elements that are used in the provision
and management of its IT services. This also is known as an asset
register.
Now, that we have the tool, the basis of usage is guided by the
SLA. The application should comply with the service level
agreements (SLA) before it passes out of the hands of the
performance analysis team. An SLA is framed and finalized after
discussions with the intended client, and it shall contain the kind
of results expected in specific terms and the level of severity.
The performance team can raise the bar to eliminate unexpected
results since ITIL consists of guidelines and are not fixed rules to
abide by.

Diagram 2: ITIL in Action

ITIL includes planning what to test, performing the actual test,
checking the results, acting on these results and repeating these
steps until the SLA is met.
There are many more guidelines in ITIL which can be
customized to an organization’s individual environment. The
above is only a mere glimpse of the wider topic.

6. The Broken Software Model
ITIL provides a generic methodology for practicing SPE, among
other important disciplines, within a production environment.
But is the issue much deeper than this? Do we have a
fundamental misconception of how software should be
developed and implemented? The following first person
narrative seeks to close the gap in the increasing identity crisis
within the current development cycle. Man has been developing
software for many years now, but performance issues only
continue to increase as the years pass.

6.1 Is SPE Only Performance?
For the past 20 years, Dr. Connie U. Smith [SMIT02] has
evangelized that developers must “build performance into
systems rather than try to add it later.” With fourteen years of
systems integration behind me – and nine of those years as a
practitioner of SPE - my life has been filled with fire drills,
project rescues, denial about the importance of SPE, calls for
performance early and often, and migration from focusing on
response time and throughput back to systems integration. What
is the problem with SPE?
The assertion here is that historically, software companies have
focused on building functionality. The left side of diagram 3
depicts the typical Software Engineering focus – a functional
development environment with a stack of functional
requirements, and a basic network and server infrastructure.
To software company executives, functionality is what
customers purchase, and therefore rationalizes the investment in
a software sales team, product management, business analysts,
functional developers and quality assurance. The right side of
the picture depicts the world of SPE: a mesh of internal and
external applications, Local Area Networks (LAN) and Wide

Area Networks (WAN), distributed servers and heterogeneous
customer behavior. Customers do not explicitly purchase the
right side of diagram 3; most casually assume it comes with the
software. Because of the lack of an explicit and lucid demand
from customers for systems integration from software vendors,
most software executives under-invest in the right side of
diagram 3. Veteran IT customers, who have been past victims of
vendor performance engineering ineptness, attempt to protect
themselves with late stage performance testing, and post
implementation software acceleration solutions and monitoring
products.
More than 50 software development projects and
implementations have convinced me that SPE is more than
modeling, load testing, response times and capacity planning.
SPE is the integration arm of software development. It is where
all things come together and effective SPE teams require
knowledge of each and every element of the greater system,
plus the specific methodologies of SPE (queuing theory,
software modeling, anti-patterns, statistics, workload
characterization, load testing and capacity planning).

Diagram 3: Software Performance Engineering vs. Functional Development

The experience that I have had with SPE has forced me to
question the reasons given for SPE’s continued struggle for
acceptance within the software development community. Is it
really because of the “lack of scientific principles and models”
[MENA02]? Is a business case for including performance in the
software development process [SMITH04] really required? The
experience of the author has stirred the following question: is the
real issue with SPE’s acceptance that fact that most software
companies are really in the business of building functionality and
not in the business of systems integration? The first prerequisite to
an answer requires the audience to accept the assertions that the
left side of diagram 3 drives software companies? The second
prerequisite requires acceptance that the complexity of the right
side of diagram 3 reflects the day-to-day world of SPE? Once the
preceding two principals are accepted then the next question is
“Does SPE suffer from an identify crisis, a poor toolset, or a lack
of commitment from company executives?
This author suggests that all three issues are holding SPE back
from becoming a mainstream practice in software companies,
however there is a critical order of priority. This author’s
repertoire of projects has left me with the conclusion that the true
identity of SPE is not well understood. Most people that I have
encountered in the field of software development have limited
software performance engineering to testing (specially load and
stress testing), tightly associating the work of SPE engineers to
that of functional testers (and widely referring to SPE groups as
quality assurance). Most in the software community do not
understand the amount of systems integration that SPE
encompasses.
It is the author’s experience that the reason for the easy association
with SPE and QA has been the focus of most projects, and the
associated companies, on functionality and not systems
integration. The following is what the author has observed as a
common evolution of SPE within companies.

! Projects blew up because of integration issues that
manifested as slow response times or system unavailability

! The companies and clients of these projects concluded that
an SPE team was required – to them, they needed someone to
run a load test

! This new group required a home
! Most of these companies and customers only had

functionality departments (product management, business
analysis, application development, quality assurance and a
systems group whose role was to supply servers for
functional development environments).

! Since the decision makers in these companies associated SPE
with testing, the logical home for SPE to them was QA.

! The expected output of SPE was test results, however when
the systems did not perform in production, SPE was held
accountable.

! To survive, SPE was forced to become more than testers,
quickly evolving into a rag tag team of system integrators:

o capable of profiling, instrumenting and
changing application code

o investigating and resolving network
bottlenecks

o analyzing and rewriting long running
database queries

o optimally configuring operations systems
o wielding best practice knowledge of multiple

COTS software packages

o setting up complex simulations to analyze the
impact of changes to any tier of the system

What could a have been done differently? If these software
companies had already invested in systems integration in addition
to functionality development, then the seeds of SPE would have
existed -- i.e. systems architecture and engineering staff, systems
engineering methodologies, and systems integration environments
that emulate production. When each of these organizations
realized that SPE was required to successfully deliver
functionality to customers, it would have only been a matter of
adopting the formal tools, methods and processes of SPE into their
existing system integration effort in order to properly formalize
the existing of a SPE team.
Once SPE has a proper day-to-day identity of systems integration,
Smith’s business case for SPE takes on a new level of weight,
because the fixing performance issues later vs. earlier become the
cost of designing, developing and deploying poor systems – the
very thing that was purchased. The SPE ROI’s becomes the ROI
of proper systems integration. Which leads us back the assertion of
Menascé and expands on his concern about scientific principals
and models; in order to do a better job at systems integration,
better SPE tools are required.

7. The Sum Total
With many years experience in the SPE field, as it continues to
grow from seed within the distributed computing world, our team
has witnessed a multitude of changes. We have provided a
glimpse into our methodology, what we have seen, and where we
are going. Looking forward, ITIL provides a sense of order in the
chaos of the production world for our application. Our scripting,
testing and optimization processes continue to grow with our
experience, and scars from continuous SPE warfare form anew.
The end game for us consists in a world where the education has
taken place, and SPE becomes part of the tree that grows from the
software engineering seed.

8. References
[RATH02] Six Sigma Pocket Guide, Rath & Strong, 2002, pg 26.
[SMITH01] Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software (1st Edition), Connie Smith and
Lloyd Williams, 2001
[MENA03] Performance by Design: Computer Capacity Planning
by Example, Daniel Menasce, Virgilio A. F. Almeida and
Lawrence W. Dowdy, 2003
[MOBLEY05] SFMEA; Applying a Six Sigma Method to
Software Performance Engineering, Kevin Mobley, 31st Annual
International Conference of The Computer Measurement Group,
Inc., December 4 - 2005
[SMIT02] Smith, C. U., notes from Software Performance
Engineering seminar held April 28 through May 2, 2002, in Santa
Fe, New Mexico, page 1-4.
[MENA02] “Software, Performance, or Engineering?”, Daniel A.
Menascé , Workshop on Software Performance Engineering, 2002
[SMITH04] “Making the Business Case for Software Performance
Engineering”, Connie Smith and Lloyd Williams, 30th Annual
International Conference of The Computer Measurement Group,
Inc., December 2004

